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Rotational constraint representing a local external bias generally has a nontrivial effect on the critical
behavior of lattice statistical models in equilibrium critical phenomena. In order to study the effect of rotational
bias in an out-of-equilibrium situation like self-organized criticality, a two state “quasideterministic” rotational
sandpile model is developed here imposing rotational constraint on the flow of sand grains. An extended set of
critical exponents are estimated to characterize the avalanche properties at the nonequilibrium steady state of
the model. The probability distribution functions are found to obey usual finite size scaling supported by
negative time autocorrelation between the toppling waves. The model exhibits characteristics of both deter-
ministic and stochastic sandpile models.

DOI: 10.1103/PhysRevE.75.041122 PACS number�s�: 05.20.�y, 05.65.�b, 45.70.Ht, 05.45.Tp

I. INTRODUCTION

The phenomenon that a class of externally slow driven
systems evolves naturally into a state of no single character-
istic size or time without fine tuning of any parameter is
known as self-organized criticality �SOC� �1–3�. In SOC, the
system evolves into a nonequilibrium steady state character-
ized by long range spatiotemporal correlations and power
law scaling behavior as observed in equilibrium critical phe-
nomena �4�. The phenomenon is observed in many natural
physical and chemical processes �5�. Sandpile, a prototypical
model, was introduced by Bak, Tang, and Wiesenfeld �BTW�
�6� for studying SOC. The system here is driven by adding
sand grains, one at a time, randomly to the sites of a regular
lattice. In BTW, the model evolves following certain deter-
ministic rules for distributing grains of a sand column among
all the nearest neighbors equally if the height of a column
attains a predefined critical height. This intermittent burst of
toppling activity is called avalanche. Soon after the introduc-
tion of the BTW sandpile model, a stochastic version of the
model, namely, Manna’s stochastic model �MSM� �7� was
proposed. In MSM, sand grains flow in two randomly se-
lected directions out of four possible directions on a square
lattice after toppling. It was initially believed that BTW and
MSM belong to the same universality class �8–10�. How-
ever, calculating an extended set of exponents, introduced by
Christensen and Olami �11�, Ben-Hur and Biham claimed for
the first time that MSM belongs to a new universality class
�12�. A different universality class of MSM has been con-
firmed later by performing multifractal �13� and moment
�14� analysis of the avalanche distribution functions. It was
found that the distribution functions of avalanche properties
obey finite size scaling �FSS� in MSM �10,15� whereas in
BTW, some of them obey multiscaling �13,14�.

External bias fields were found to have a nontrivial effect
on the critical properties of various lattice statistical models
in equilibrium critical phenomena. For example, in directed
self-avoiding walks �DSAW� �16�, spiral self-avoiding walks
�SSAW� �17�, spiral lattice animal �SLA� �18�, directed per-
colation �DP� �19�, spiral percolation �SP� �20�, directed spi-
ral percolation �DSP� �21�, etc., the external bias has changed
the critical behavior of these models. The effect of external

bias on SOC is studied so far applying external global direc-
tional bias only. There are two such models, the directed
sandpile model �DSM� introduced by Dhar and Ramaswamy
�22� and the directed fixed energy sandpile �DFES� model
introduced by Karmakar and Manna �23�. In these models,
sand grains flow in a globally preferred direction after top-
pling. Application of global bias on the sandpile model in-
troduces anisotropy in the systems and leads to different uni-
versality classes for DSM �22� and DFES �23�. On the
contrary, the lattice statistical models like SLA and SP not
only remain isotropic under a local rotational bias but also
exhibit nontrivial critical behavior �18,20�. It is then intrigu-
ing to study the effect of a rotational constraint on the critical
properties of sandpile models at an out-of-equilibrium situa-
tion.

In this paper, a two state “quasideterministic” rotational
sandpile model �RSM� is introduced imposing rotational
constraint on the flow of sand grains. In this model, a site
topples if it exceeds a predefined critical height and two sand
grains flow, one in the forward direction, the direction from
which the last sand grain was received and the other in a
specific rotational direction, say clockwise with respect to
the forward direction. Since the direction of the last sand
grain received varies site to site, the rotational constraint is
local in nature. During avalanche, the direction of the last
grain received may change if the toppling sequence is
changed. This introduces certain “randomness” or “internal
stochasticity” in the model. RSM includes features like mass
conservation, open boundary, local deterministic rule for
grain distribution along with toppling imbalance, and certain
stochasticity. The model is studied here numerically in two
dimensions �2D� and the critical avalanche properties at the
nonequilibrium steady state are characterized. An extended
set of critical exponents are calculated, nature of the scaling
functions is determined, and time autocorrelations between
the toppling waves are analyzed. Interestingly, it is found
that some of the critical exponents are similar to that of BTW
but different from that of MSM whereas the scaling func-
tions follow usual FSS as in MSM. Consequently RSM be-
longs to a new universality class. A physical realization of
RSM could be a sandpile on a disk rotating slowly about an
axis perpendicular to the plane of the disk and passing
through the center of the disk.
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II. ROTATIONAL SANDPILE MODEL

RSM is defined here on a square lattice of size L�L in
2D. A positive integer hi, the height of the sand column, is
assigned to each lattice site. Initially, all hi’s are set to zero.
Sand grains are added, one at a time, to randomly chosen
lattice sites and the variable hi is incremented to hi+1 if a
sand grain is added to the ith site. A site is called active or
critical when the height of a site becomes greater than or
equal to a predefined threshold value hc=2, as in MSM. The
active site will burst into a toppling activity. Toppling of the
first active site initiates an avalanche. This site can be called
the origin of the avalanche. The flow of sand grains is now
demonstrated with the help of Fig. 1. On the very first top-
pling of the active site, the central black circle, two sand
grains are given away to two randomly selected nearest
neighbors out of four nearest neighbors on a square lattice.
Note that this is the only externally imposed stochastic step
in the model. The gray circles �sites 2 and 4� represent the
recipient sites. As soon as a site receives a sand grain, the
direction di from which the grain was received is assigned to
it along with the increment of its height hi. The value of di
can change from 1 to 4 as there are four possible directions
on a square lattice. The solid arrows in Fig. 1 indicate dif-
ferent possible directions. As the avalanche propagates, the
direction di and height hi are updated on receiving a sand
grain and the information from which direction the last sand
grain was received is only kept. Now the next active sites
with hi�2 in the avalanche will topple following a determin-
istic rule. Two sand grains from a critical site will flow, one
in the forward direction, the direction from which the last
grain was received, and the other in a clockwise rotational
direction with respect to the forward direction. Note that dis-
tribution of sand grains from an active site depends on the

receiving direction of the last sand grain before toppling,
which varies site to site. Thus, the rotational constraint rep-
resents a spatially local bias here in RSM in contrast to the
directed bias where the directions of sand flow are globally
fixed. If the gray sites �2 and 4� in Fig. 1 are the new active
sites after receiving sand grains from the central site, the
flow of sands after toppling of the gray sites will be in the
forward and along a rotational direction as indicated by dot-
ted arrows. The toppling rules for the ith active site can be
stated as

hi → hi − 2,

hj → hj + 1, j = di, di + 1, �1�

where di is the direction from which the last sand grain was
received by the ith site. If the index j becomes greater than 4
it is taken to be 1. It is important to note that the number of
sand grains outgoing from a site after toppling is not neces-
sarily equal to the number of sand grains incoming to the
same site after toppling of its nearest neighbors once each.
Therefore, there is toppling imbalance in RSM as in MSM
�24� whereas there is complete toppling balance in BTW.
Note that toppling imbalance in RSM is due to the imposi-
tion of rotational constraint whereas the same appears in
MSM due to stochasticity in grain distribution. Toppling of
an active site may cause a series of intermittent bursts, which
constitutes an avalanche. During an avalanche no sand grain
is added. Propagation of an avalanche stops if all sites of the
lattice become undercritical. The avalanche dynamics is
studied with open boundary condition. The number of sand
grains remains conserved in the model. The steady state cor-
responds to the constant average height of the sandpile when
the current of the incoming flux of sand grains is equal to
that of the outgoing flux.

It should be noted here that the final state in an avalanche
depends on the sequence of toppling of the critical sites due
to the rotational rules considered here. It is demonstrated in
Fig. 2 considering two nearest neighbors at the critical state
�h=2� at the same time step. The numbers represent the
height of the sand column at that site. The short arrows as-
sociated with the numbers represent the direction from which
the last sand grain was received. It can be seen that reversing
the order of toppling, two different final states are obtained.
It has been verified for a larger lattice that the interchange of
toppling sequence leads to different final configurations start-
ing from the same initial state. Consequently, the model is

2

3

4

1

FIG. 1. RSM is demonstrated on a 3�3 square lattice. The
central black site becomes upper critical first. Arrows with numbers
1–4 indicate four possible directions on the square lattice. Two sand
grains flow along directions 2 and 4. Consequently, the gray sites
become critical. The possible directions of the flow of sands from
the gray sites are indicated by dashed arrows.
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Site on the left toppled first

Site on the right toppled first

FIG. 2. Two different final states are obtained interchanging the
toppling sequence starting from the same initial state. The numbers
represent the height of the sandpile and the associated arrows rep-
resent the direction from which the last sand grain was received.
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non-Abelian. Note that toppling of one site may change the
present state �direction from which the last sand grain was
received� of the nearest neighbors. Consequently, the sand
grains will flow in different directions than it was expected
before toppling of its neighbors. Apart from the initial sto-
chastic step, the imposition of the rotational rule then also
introduces some randomness in the model during time evo-
lution. This can be considered as “internal stochasticity” in
the model in contrast to the externally imposed stochasticity
in MSM. This inherent randomness makes the model not
only non-Abelian but also “quasideterministic.” Due to the
stochastic dynamical rules, MSM had already been found
non-Abelian �25�. It is also important to notice that the local
correlation in the rotational toppling rule then cannot propa-
gate throughout the avalanche as in BTW because of the
“internal stochasticity” in the model.

RSM is thus a new two state, quasideterministic, non-
Abelian sandpile model under local external rotational bias.
Despite few attempts, the critical behavior of non-Abelian
sandpile models are less understood. The non-Abelian Zhang
model �26� belongs to the same universality class as that of
Abelian BTW in the limit of a small quantum of energy
added to the system �27�. The directed slope model is non-
Abelian �28� but it shows the same critical behavior as that
of the Abelian directed model �22�. A crossover behavior of
critical exponents from a generalized Zhang model to that of
the BTW model depending upon a nonuniversal parameter p,
the probability of sand flow in a given direction, is shown by
Biham et al. �29�. On one hand, RSM has features of mass
conservation, open boundary, local deterministicity in gain
distribution to the neighborhood after toppling as that of
BTW; on the other hand, it has features like toppling imbal-
ance, certain stochasticity and non-Abelianity as that of
MSM. It is then interesting to characterize the critical prop-
erties of RSM, which has microscopic features of both BTW
and MSM. Below, the avalanche properties at the steady
state are characterized in three different ways: �i� calculating
an extended set of critical exponents, �ii� performing moment
analysis of the probability distribution functions, and �iii�
coarsening an avalanche into a series of toppling waves.

III. RESULTS AND DISCUSSION

A. Steady state

The nonequilibrium steady state is defined by the constant
average height of the sandpile at which the current of influx
of sand grain to the system is equal to the current of outflux
of the same at the open boundary. In order to identify the
steady state, the average height

�h� =
1

L2�
i=1

L2

hi �2�

has been measured generating a large number of avalanches.
The average height �h� is plotted against the number of ava-
lanches up to 106 in Fig. 3 for the system size L=2048. It can
be seen that a constant average height �h� is achieved and it
remains constant over a large number of avalanches. For

smaller lattice sizes the steady states are reached by a smaller
number of avalanches. A slight variation of the average
height with the system size is observed. The values of �h�
against the system size L is shown in the inset. In order to
characterize the physical properties of the avalanches, which
occurred at the nonequilibrium steady state, simulations have
been performed on the square lattice of sizes L=128 to L
=2048 in multiples of 2. The first 106 avalanches were
skipped to achieve the steady state. Extensive data collection
has been made for each lattice size for averaging, ranging
from 32�106 avalanches for L=128 down to 2�106 ava-
lanches for L=2048 in ten configurations. In each configura-
tion, the initial 105 avalanches are neglected again on the
steady state before collecting data. It should be mentioned
here that due to the rotational constraint the lifetime of an
avalanche in RSM is much higher in comparison to that in
other models. The generation of a large number of ava-
lanches then requires huge computer time in RSM.

B. Avalanche cluster morphology

A comparison of the morphology of avalanche clusters in
the steady state of different sandpile models is made here.
Typical large avalanche clusters of BTW, MSM, and RSM
obtained in their respective steady states are shown in Fig. 4.
The avalanche clusters are generated on a square lattice of
size 64�64 dropping sand grains one at a time at the center
of the lattice. The clusters shown here have 21 maximum
numbers of toppling in each and it is represented by the red
color. Different colors correspond to different numbers of
toppling of sites in an avalanche as black for 21, blue for
20-17, red for 16-13, green for 12-9, yellow for 8-5, and gray
for 4-1 toppling numbers. White spaces inside the avalanche
correspond to the sites that did not topple at all during the
avalanche. There are a few things to notice. First, RSM ava-
lanche cluster is different from that of both BTW as well as
MSM. The BTW avalanche cluster consists of concentric
zones of lower and lower numbers of toppling around a
single maximal toppling zone �30� whereas avalanche cluster
of MSM is random in nature �12�. The RSM avalanche clus-
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FIG. 3. Plot of average height �h� against the number of ava-
lanches. The value of �h� remains constant over a large number of
avalanches and changes slightly with the system size L. Depen-
dence of the saturated average height �h�s on the system size L is
shown in the inset.

CHARACTERISTICS OF DETERMINISTIC AND… PHYSICAL REVIEW E 75, 041122 �2007�

041122-3



ter neither fully consists of concentric zones as in BTW nor
it is totally random. It is important to note that the local
correlation in rotational constraint does not lead to long
range correlation generating BTW like correlated structure.
Second, there are more than one black zones �maximum
number of toppling zones� in the avalanche cluster of RSM
in Fig. 4�c� as in the avalanche cluster of MSM �Fig. 4�b��
whereas there is only one black zone at the center of the

avalanche cluster of BTW �Fig. 4�a��. It is then possible to
have several maximal toppling zones in an avalanche in
RSM whereas in BTW always one maximal toppling zone
appears �30�. The RSM avalanche looks like superimposition
of several BTW-type structures around different maximal
toppling zones. The occurrence of several maximal toppling
zones is also a common feature in the MSM avalanche
�12,30�. Third, though the sand grains are added at the cen-
tral site of the lattice the maximal toppling zones appear at
arbitrarily different places in RSM as well as in MSM. In
BTW, the central zone corresponds to the maximal toppling
zone �30�. Fourth, BTW avalanche clusters are compact
without holes or no toppling regions inside an avalanche �see
Fig. 4�a��. On the other hand, there are several holes that
appear in MSM as seen in Fig. 4�b�. The RSM avalanche
cluster is almost compact with a few holes here and there.
The appearance of holes in MSM is due to the stochastic rule
of sand distribution and the same in RSM is due to the rota-
tional rule of sand distribution. Note that holes of a single
site also appear in the avalanche clusters of RSM. Appar-
ently it seems the generation of a single sited hole is forbid-
den by the rotational rule. Single sited holes could only ap-
pear at the termination point of two different branchings of
toppling of a previous site. An avalanche can be considered
as a branching process since toppling of a site can make
more than one neighbor critical �31�. The RSM avalanche
cluster therefore has properties of both the deterministic
BTW and stochastic MSM. It is then expected that the criti-
cal avalanche properties in the steady state will show a
mixed behavior. Note that the avalanche clusters are isotro-
pic in space in RSM as in both BTW and MSM. However,
the avalanche clusters are anisotropic in the cases of DSM
and DFES where two correlation lengths are required to
characterize their spatial extensions.

C. Criticality and power laws

In order to characterize different physical properties of the
avalanches, which occurred at the steady state, different
quantities like toppling size s of an avalanche, avalanche
area a, lifetime t, and spatial extension l are measured. Top-
pling size s is defined as the total number of toppling which
occurred in an avalanche. Avalanche area a is equal to the
number of distinct sites toppled in an avalanche. Lifetime t
of an avalanche is taken as the number of parallel updates to
make all the sites undercritical. Spatial extension l of an
avalanche is given by l2=2�i=1

a �r0−ri�2 /a, where r0

=�i=1
a ri /a, ri is the position vector of the distinct sites

toppled. The related critical exponents are estimated deter-
mining the probability distributions of all these properties �s,
a, t, and l�. The probability distribution function of an
avalanche-related quantity x at the steady state of a given
system size L is expected to obey power law behavior given
by

P�x,L� � x−�xf�x/LDx� , �3�

where �x is the corresponding critical exponent and x stands
for s, a, t, and l. f�x /LDx� is the finite size scaling function
and Dx is called a capacity dimension. In the L→� limit, the

(a)

(b)

(c)

FIG. 4. �Color online� Typical avalanches generated at the
steady state are shown for BTW �a�, MSM �b�, and RSM �c� on a
square lattice of size 64�64. Avalanches are generated dropping
sand grains at the central site of the lattice. The maximum number
of topplings that occurs in each cluster is 21. Different colors �in
gray scale from darker to lighter� chosen are black for 21, blue for
20-17, red for 16-13, green for 12-9, yellow for 8-5, and gray for
4-1 toppling numbers. White space inside the avalanche corre-
sponds to the sites that did not topple at all during the avalanche.
The avalanche cluster of RSM has characteristics of both BTW and
MSM.
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scaling function f�0� becomes a constant and the power law
behavior given in Eq. �3� can be approximated as P�x�
�x−�x. The corresponding exponents �x can be estimated
from the slope of the best fitted straight line through the data
points in logarithmic scale. Data are collected in bins of in-
tervals of 10s, 100s, 1000s, and so on. Finally, the data are
normalized by the bin widths. In Fig. 5, the probability dis-
tribution P�s� of the toppling size s is plotted for different
system sizes, L=128 to L=2048 in multiples of 2. It can be
seen that the toppling size distribution has the same power
law behavior for different system size L with a cutoff that
increases with L. Since there is no typical toppling sizes of
an avalanche at the nonequilibrium steady state, RSM then
exhibits self-organized criticality. The solid line represents
the best fitted straight line between the data points of L
=2048 with a slope of 1.224±0.005. The error is due to the
least square fitting taking into account the statistical error of
each data point. The slopes obtained from the best fitted part
of data for other values of L remain within this error bar. In
order to extract the critical exponents related to other ava-
lanche properties the same procedure has been followed.
However, in Fig. 6 the probability distribution P�x� is plotted
against x only for L=2048 where x corresponds to area a
�circles�, lifetime t �triangles�, and spatial extension l
�squares�. It can be seen that the probability distributions
P�x� follow reasonable power law behavior for each property
x. The solid lines represent the best fitted straight line
through the data points. The values of the associated critical
exponents �x are obtained from the slopes of the best fitted
straight lines as �a=1.334±0.005, �t=1.389±0.005, and �l
=1.667±0.007. The error bars quoted here are the least
square fit errors taking into account the statistical error of
each data point. A comparison of the values of the exponents
obtained here is made with that of BTW and MSM in Table
I. The values of the exponents for BTW and MSM are taken
from Refs. �12,32�. Interestingly, the toppling size exponent
�s and the lifetime exponent �t are different, whereas �a and
�l are almost the same as that of BTW. The disagreement of
the lifetime and toppling size distribution exponents with the

corresponding BTW exponents can be accounted by the fact
that in RSM the avalanche waves generally have a spiraling
nature around several maximal toppling zones within the
avalanche cluster and as a consequence it will take a longer
time and a larger number of toppling for an avalanche to die
away than that in BTW, where a single maximal toppling
zone occurs and the toppling wave propagates outwardly. On
the other hand, in comparison to MSM, most of the expo-
nents are found different. Thus, from the point of view of
power law correlations, some of the avalanche properties are
similar to that of BTW but different from MSM. Note that
�s=2−1/�a, conjectured by Majumder and Dhar �33�, is sat-
isfied in the case of MSM but it is not valid for BTW. It can
be seen that the conjecture is just outside the error bar here in
the case of RSM. The expected value of �s in RSM from the
conjecture is 	1.25 close to the obtained value
1.224±0.005.
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FIG. 5. P�s� is plotted against s for different system sizes L: L
=128 ���, L=256 ���, and L=512 ���, L=1024 ���, L=2048
���. The solid lines show the best fitted part and the slope corre-
sponds to �s=1.224±0.005. Toppling size distribution has power
law correlation at the steady state.
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FIG. 6. Plot of probability distributions of avalanche area P�a�
���, lifetime P�t� ���, and extension of avalanche P�l� ��� against
the corresponding variables a, t, and l for L=2048. Reasonable
power law distributions are obtained for all three properties. The
solid lines show the best fitted parts and the slopes correspond to
the respective exponents �a=1.334±0.005, �t=1.389±0.005, and
�l=1.667±0.007. Errors are least square fit error taking into account
the statistical errors of each data point.

TABLE I. Comparison of critical exponents obtained in differ-
ent sandpile models. The values of the critical exponents for BTW
and MSM are taken from Refs. �12,32�. Some of the exponents are
close to that of BTW and most of them are different from that of
MSM.

Models

Exponent BTW MSM RSM

�s 1.293 1.275 1.224±0.005

�a 1.330 1.373 1.334±0.005

�t 1.480 1.493 1.389±0.005

�l 1.665 1.743 1.667±0.007

�sa 1.06 1.23 1.453±0.003

�at 1.53 1.35 1.167±0.005

�al 2.00 2.00 2.002±0.002

�tl 1.32 1.49 1.715±0.005
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Since the avalanche properties are related to each other,
conditional expectation values are defined as introduced by
Christensen et al. �34�. The conditional expectation value of
an avalanche property x when another property is exactly
equal to y is defined as

�x�y�� = �
x

xP�x,y� , �4�

where P�x ,y� is the probability to find a property x when the
other property is exactly equal to y for a given system size L.
In the steady state, the expectation values scale with its ar-
gument as

�x�y�� � y�xy , �5�

where �xy is a critical exponent. Four expectation values
�s�a���a�sa, �a�t��� t�at, �a�l��� l�al, and �t�l��� l�tl are cal-
culated on a square lattice of size L=2048 and their scaling
behavior are determined. In Fig. 7, the expectation values are
plotted against their arguments in order to evaluate the expo-
nents �xy. From the slope of the best fitted straight lines, the
values of the exponents are estimated as �sa=1.453±0.003,
�at=1.167±0.005, �al=2.002±0.002, and �tl=1.715±0.005.
The values of �xy in DSM �12� are smaller in comparison to
the values obtained here. In Table I, the values of �xy are
compared with that of BTW and MSM. There are a few
things to notice. First, �sa is found greater than one and a
relevant exponent. This is expected because in this model, a
site topples many times in an avalanche due to rotational
constraint. Second, the exponent �al is found 	2 since the
avalanche clusters are almost compact with a few holes here
and there. Third, the value of the dynamical exponent �tl is
the highest in RSM and it is lowest in BTW. Because, due to
the rotational constraint the sand grains rotate around several
maximal zones inside the avalanche and take a longer time to
complete an avalanche. Fourth, according to the scaling
function form given in Eq. �5�, the exponents should satisfy
the scaling relation �xz=�xy�yz. It can be seen that the scaling

relation �al=�at�tl is satisfied within error bars. Fifth, the
values of �sa, �at, and �tl are found different from that of
BTW as well as MSM except �al. Finally, a set of scaling
relations between the probability distribution exponents �x
and the exponents �xy describing the conditional expectation
values of the avalanche properties can be obtained from the
following identity:


 �x�y��P�y�dy =
 �x�z��P�z�dz , �6�

which would be satisfied by any set of three stochastic vari-
ables x, y, and z. Using this identity and the relation �xz
=�xy�yz, the following scaling relation can be obtained:

�xy = ��y − 1�/��x − 1� . �7�

The above scaling relation is satisfied within error bars for
x ,y� �s ,a , l , t�. Thus, the extended set of exponents obtained
here in RSM from both power law analysis and conditional
probabilities are consistent with the scaling relations. Note
that the values of the critical exponents obtained here should
remain invariant under the reversal of rotational symmetry.
Though some of the exponents are close to that of BTW,
RSM belongs to a different universality class because the
extended set of exponents are not identical. Note that DSP
and DEFS already belong to different universality classes
because of their anisotropic character. Directed models show
a continuous phase transition from an absorbed phase to an
active phase �22,23,35�.

D. Moment analysis and finite size scaling

Now the avalanche properties are analyzed to understand
the nature of the scaling functions, FSS, or multiscaling, fol-
lowing the method of moment analysis �13,14,24�. The prob-
ability distribution P�x ,L� of an avalanche property x in a
finite system of size L is expected to obey a scaling function
form as given in Eq. �3�, P�x ,L��x−�xf�x /LDx�, where Dx is
called a capacity dimension as already mentioned. The finite
system size L causes a cutoff of the probability distributions
at xmax�LDx. The q moments of a property x is defined as

�xq� = 

0

xmax

xqP�x,L�dx � L�x�q�, �8�

where �x�q�= �q+1−�x�Dx. Thus, if the probability distribu-
tions obey FSS then the moment exponent �x�q� should have
a constant gap between two successive values �x�q+1�
−�x�q�=Dx. On the other hand, if they obey multiscaling,
�x�q� should have a continuous dependence on q. For a
given q, the value of �x has been obtained from the slope of
the plot of log2�xq�L�� versus log2 L changing lattice size
from L=128 to 2048 in multiples of 2. The least square fit
error for each �x value is found to be ±0.01. A sequence of
exponents �x�q�, x� �s ,a , t�, is obtained for 400 values of q
between 0 and 4. In Fig. 8, the exponent related to the aver-
age toppling size �s�q� is plotted against the moment q. An
important point to note here is that the value of �s�1� is 	2
in all three models. The average toppling size varies with the

0 3 6log10y
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g 10

x

a ~ l
γal

a ~ t
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s ~ a
γsa

t ~ l
γtl

FIG. 7. Plot of conditional probabilities of avalanche properties:
toppling �s� versus area �a� �+�, area �a� versus extension �l� ���,
area �a� versus time �t� ���, and time �t� versus length �l� ���. The
solid lines show the best fitted straight line parts. Corresponding
exponents are found as �sa=1.34±0.01, �at=1.167±0.005, �al

=2.002±0.002, and �tl=1.713±0.015. Errors are least square fit
error.
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system size as �s��L�s�1�, where s is equivalent to the num-
ber of steps by a random walker required to reach the lattice
boundary �31�. Thus, the value of �s�1�	2 represents the
diffusive character of the model, one of the characterizing
features of the sandpile models. The diffusive behavior of
RSM is also consistent with the fact that spiral random walks
are diffusive �36�. In order to compare the results of RSM
with that of BTW and MSM, a sequence of exponents �x�q�
are also obtained for these two models and plotted in the
same figure. It can be seen that the variation of �s�q� with q
in Fig. 8 is not identical with either BTW or MSM. Further
analysis of this sequence of exponents is then needed in or-
der to understand the nature of the scaling function. The
slopes ��x /�q are then estimated using the finite difference
method. If the probability distributions obey multiscaling,
the rate of change of �x�q� with q should not be a constant.
In Fig. 9, ��x /�qs are plotted against the moment q for x
� �s ,a , t� and compared with that of BTW and MSM. In Fig.
9, the solid line represents the data of RSM, the dashed line
represents the data of MSM, and the dotted line represents
the data of BTW. The rate of change of �x�q� with respect to
q for all three properties x� �s ,a , t� in RSM are different
from that of both BTW and MSM and remain unchanged in
higher moments as in the case of MSM. In BTW, the deriva-
tives corresponding to toppling size s and lifetime t do not
saturate with the moment q. A comparison of variation of
��x /�q with q in BTW and RSM with respect to MSM can
be made. In order to have a comparative study a quantity
	x,m�q� is defined as

	x,m�q� = 1 −
�x,m� �q�

�x,MSM� �q�
 , �9�

where ���q�=�� /�q and m stands for the models BTW or
RSM. 	x,m�q� is plotted against q in the inset of correspond-
ing plots. The dotted line corresponds to 	x,BTW and the solid
line corresponds to 	x,RSM. It can be seen that the value of
	x,RSM�q� remains constant with respect to MSM whereas in
the case of BTW, data corresponding to toppling size and
lifetime increases slowly with respect to MSM. Thus, the

scaling functions of the avalanche properties in RSM follow
FSS as in MSM rather than multiscaling as in BTW.

The values of the capacity dimensions Dx can be calcu-
lated taking the large q limit of ��x�q� /�q. The values ob-
tained are Ds=2.86±0.01, Da=2.03±0.01, and Dt
=1.60±0.01. The errors are due to the finite difference
method adopted for differentiation of the ��q� sequence. The
value of Dl is trivially equal to 1 because lmax�L. Since
�P�x�dx=�P�y�dy for a given system size L, it can be shown
that Dx /Dy =�xy. Taking Dl=1, one should have Dx=�xl. For
RSM, the values of Dx and �xl are found close. Since
��s�q� /�q and ��a�q� /�q do not saturate in BTW, the corre-
sponding capacity dimensions are not possible to estimate.
However, the capacity dimension Da in all three models are
found 	2 as it is expected. The values of Ds and Dt in MSM
�as in Ref. �10�� and RSM differ slightly. Note that Ds�2
−�s�	2.22 is slightly higher than �s�1�	2 because q=1
remains in the nonlinear regime in RSM.

Knowing the values of capacity dimensions, it is now
possible to check the scaling function form given in Eq. �3�
studying the distribution functions for different system sizes
L. The scaling function form is checked by plotting a scaled
distribution P�x�LDx�x against the scaled variable x /LDx for
x� �s , t� in Fig. 10 following Chessa et al. �10�. For both the
properties toppling size s and lifetime t, a reasonable col-
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FIG. 8. Plot of �s�q� versus q. Data of RSM �solid line� are
compared with that of BTW �dotted line� and MSM �dashed line�.
�s�q� of RSM is not identical with that of either BTW or MSM. The
plus sign corresponds to the coordinate q=1 and �s�1�=2.

2 3 4q0.0

0.1

∆ s

2 3 4q0.00

0.03

∆ a

2 3 4q0.0

0.2

∆ t

0

1

2

3

∂σ
s(

q)
/∂

q

0

1

2

∂σ
a(

q)
/∂

q

0 1 2 3 4q
0

1

∂σ
t(q

)/
∂q

(a)

(b)

(c)
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MSM are plotted against the moment q in the inset of respective
plots. Dotted lines represent the relative change of rates of BTW
with respect to MSM and the solid lines represent the same for
RSM with respect to MSM.
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lapse of data are observed for L=512, 1024, and 2048 in
support of the assumed scaling function form in Eq. �3�. In
the inset of Fig. 10, data collapse for toppling size s is also
shown in logarithmic-normal scale. The FSS forms assumed
here in RSM for the avalanche properties are then correct. In
spite of the fact that RSM has a locally deterministic rule for
grain distribution �it is conservative�, its avalanche cluster
morphology is almost compact �it is diffusive�, and some of
the critical exponents are similar to that of BTW, it is inter-
esting to note that the scaling functions in RSM do not fol-
low multiscaling as in BTW. A sandpile model with micro-
scopic as well as macroscopic characteristics of a
deterministic model like BTW follows FSS, which is char-
acteristic of a stochastic model like MSM, is a new result.
This has happened due to the nature of the rotational con-
straint, which incorporates “internal stochasticity” by chang-
ing the state of the critical sites in a time step during time
evolution of the system. Note that due to the presence of
rotational constraint on the sand flow the toppling balance of
BTW is also broken as already mentioned. Recently, it is
demonstrated by Karmakar et al. �24� that the scaling func-
tions obey FSS rather than multiscaling if toppling imbal-
ance is introduced in the BTW sandpile model. Existence of
FSS in RSM is possibly due to toppling imbalance as well as
“internal stochasticity” in the model.

E. Time autocorrelation

FSS of avalanche properties can be confirmed by studying
time autocorrelation between toppling waves. The time evo-
lution of toppling dynamics is studied here coarsening the
avalanches into a series of toppling waves �37�. Toppling
waves are defined as the number of topplings during the
propagation of an avalanche starting from a critical site O
without toppling O more than once. Each toppling of O cre-
ates a new toppling wave. Thus, the total number of toppling
s in an avalanche can be considered as

s = �
k=1

m

sk, �10�

where sk is the number of topplings in the kth wave and m is
the number of toppling waves during the avalanche. It is then
possible to generate a wave time series �sk�. Following Me-
nech and Stella �38�, for a given lattice size L, a time auto-
correlation function is defined as

C�t� =
�sk+tsk� − �sk�2

�sk
2� − �sk�2 , �11�

where t=1,2 , . . . and �. . .� represents the time average. It has
already been demonstrated by Menech and Stella �38� and
Karmakar et al. �24� that C�t� is long range for BTW
whereas it remains negative initially and then becomes zero
in the case of MSM. Thus, the waves in BTW have correla-
tion over a longer period of time whereas they are uncorre-
lated in the case of MSM. This is also argued by Menech and
Stella �38� that this observation is consistent with the fact
that the toppling sizes follow multiscaling in BTW and FSS
in MSM. The time autocorrelation function C�t� for the top-
pling waves has also been calculated here in RSM for a
system size L=1024 taking time average over 106 toppling
waves. C�t� is plotted against t for RSM in Fig. 11. In order
to compare the data of RSM with that of BTW and MSM,
C�t�s of these models are also calculated and plotted in the
same figure. It can be seen that there is long range correlation
for BTW and anticorrelation for MSM as expected. The top-
pling waves are also uncorrelated here in RSM as in the case
of MSM. C�t� is found negative initially and then becomes
zero. It is then consistent with the fact that the toppling size
distribution follow FSS rather than multiscaling. The origin
of negative autocorrelation in MSM is the stochasticity. In
RMS, the local deterministic toppling rule picks up certain
randomness during the evolution and as a consequence the
toppling wave shows negative autocorrelation. Though the
rotational constraint has local correlation, the toppling waves
become uncorrelated because of the “hidden stochasticity.” It
should be mentioned here that in the cases of MSM and
RSM, the sites involved in a toppling wave may topple more
than once unlike in the case of BTW. Moreover, the toppling
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numbers as well as the final configurations of MSM and
RSM strongly depend on the sequence of toppling. As a con-
sequence, Eq. �10� may not always be satisfied in RSM and
MSM. However, on an average the collection of toppling
waves can be considered as a representation of an avalanche
in these models.

IV. CONCLUSION

A new two state “quasideterministic” sandpile model
RSM is defined imposing rotational constraint on the sand
flow in order to study the effect of local external bias on
self-organized critical systems. The model has microscopic
properties such as mass conservation, open boundary, and
local deterministicity in sand grain distribution on toppling
as that of BTW. At the same time, the rotational bias intro-
duces toppling imbalance and certain stochasticity at the mi-
croscopic level as in MSM. The nonequilibrium steady state
of RSM is characterized by power law distribution of ava-
lanche properties. The avalanche cluster morphology in the
steady state exhibits characteristics of both BTW as well as
MSM. RSM is found to be diffusive in character like other
sandpile models. Calculating an extended set of critical ex-

ponents it is found that some of the exponents are close to
that of BTW but different from MSM. The values of the
exponents satisfy the scaling relations among them within
error bars. RSM then belongs to a new universality class.
The scaling function forms are determined. It is found that
the scaling functions obey the usual FSS as in the case of
MSM rather than multiscaling as in the case of BTW. This
has been confirmed by negative time autocorrelation of top-
pling waves constituting an avalanche. A sandpile model
having certain microscopic as well as macroscopic features
of BTW follows FSS as that of MSM is an important result.
The appearance of FSS in RSM may be due to local toppling
imbalance and “internal stochasticity” caused by the imposed
rotational constraint on the model.
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